Проекционная экспонирующая система
Номер патента: U 7222
Опубликовано: 30.04.2011
Авторы: Есьман Василий Михайлович, Трубчик Иван Трофимович, Агейченко Александр Степанович
Текст
(51) МПК (2009) НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ(71) Заявитель Научно-производственное республиканское унитарное предприятие КБТЭМ-ОМО(72) Авторы Агейченко Александр Степанович Есьман Василий Михайлович Трубчик Иван Трофимович(73) Патентообладатель Научно-производственное республиканское унитарное предприятие КБТЭМ-ОМО(57) Проекционная экспонирующая система, содержащая осветительную систему, стол ретиклов с ретиклом, проекционный объектив, координатный стол пластин с подложкой,выполненный с приводами перемещения стола по координатам ,и вдоль оптической оси проекционного объектива, систему фокусировки, состоящую из многоканального датчика фокусировки и устройства обработки сигналов фокусировки, устройство управления проекционной экспонирующей системой, отличающаяся тем, что многоканальный датчик фокусировки системы фокусировки выполнен с раздельными каналами с возможностью построения изображения маски каждого канала на подложку и, после отражения от нее на фотоприемник соответствующего канала, причем топология маски каждого канала выполнена в виде узких щелей, ориентированных вдоль пересечения плоскости резкого изображения объектива каждого канала датчика фокусировки и поверхности подложки. 72222011.04.30 Полезная модель относится к технологическому оборудованию для производства интегральных схем (, ), плоских экранов (, , ), печатных плат высокой плотности соединенийи т.п. В частности, полезная модель касается проекционного устройства экспонирования для технологического процесса литографии, в котором используется оптический перенос рисунка ретикла (фотошаблона или маски) на фоточувствительную подложку (пластину) через проекционную оптическую систему. Разрешающая способность проекционных оптических систем прямо пропорциональна длине волны используемого излучения и обратно пропорциональна числовой апертуре объектива . Чтобы поднять разрешающую способность, необходимо уменьшать длину волны источника и увеличивать апертуру. Однако это приводит к уменьшению глубины резкости оптической системы, так как глубина резкости пропорциональна длине волны источника излучения и обратно пропорциональна квадрату числовой апертуры . Вследствие этого для поддержания поверхности подложки точно в плоскости лучшего изображения проекционного объектива к системе автоматической фокусировки экспонирующей системы предъявляются повышенные требования. Современная тенденция развития микроэлектроники такова, что наряду с постоянным уменьшением размера минимального элемента топологии постоянно растут размеры экспонируемого модуля, что значительно повышает требования и к фокусированию, и к выравниванию плоскости подложки. То есть существует необходимость измерения положения поверхности подложки в пределах площади экспонируемого кадра и управления наклоном плоскости подложки. Ближайшим прототипом предлагаемой полезной модели является проекционная экспонирующая система, которая содержит стол ретиклов с ретиклом, проекционный объектив, координатный стол пластин с подложкой, который оснащен приводами перемещения стола по координатам ,и вдоль оптической оси проекционного объектива, систему фокусировки, состоящую из многоканального датчика фокусировки и устройства обработки сигналов фокусировки, а также устройство управления проекционной экспонирующей системой 1. У прототипа в многоканальном датчике фокусировки используется одна маска с пятью отверстиями. Производится измерение положения поверхности экспонируемой пластины в четырех углах и центре каждого кадра. Первый объектив датчика должен построить изображения каждого из отверстий на поверхность пластины, покрытой фоторезистом. Однако при таком наклонном построении изображения на поверхности пластины будет резкое изображение отверстий маски, находящихся только на одной линии. Другими словами, построение резкого изображения участка маски датчика возможно только по линии, которая образована пересечением плоскости резкого изображения первого объектива датчика фокусировки и плоскости поверхности измеряемой пластины. Резкие изображения других отверстий маски датчика будут находиться либо ниже, либо выше поверхности измеряемой пластины. Поэтому на поверхности пластины их изображение будет сильно размытым или его вообще не будет. Несмотря на это, второй объектив датчика фокусировки построит в плоскость приемника резкие изображения абсолютно всех отверстий маски датчика. Это произойдет вследствие сохранения одинакового хода для всех каналов (наклонно падающих и отраженных от пластины лучей) между двумя объективами каждого канала датчика фокусировки. Недостатком прототипа является увеличенная погрешность измерения положения и наклона поверхности пластины по причине невозможности построения на ее поверхности резких изображений одновременно от всех отверстий маски. Дополнительные погрешности измерения положения поверхности пластины происходят по следующей причине. При построении резкого изображения маски датчика на поверхности пластины и последующего построения этого изображения в плоскость приемника, смещение изображения топологии (отверстия) маски в плоскости приемника 2 72222011.04.30 происходит только при смещении пластины вдоль оси проекционного объектива и не происходит в случае наклона измеряемой пластины. Только при построении резкого изображения маски датчика в плоскости пластины в случае наклона пластины уменьшится количество света, пришедшего в приемник, но положение изображения отверстия маски на поверхности пластины и соответственно положение изображения отверстия маски в плоскости приемника не изменится. То есть только при резком изображении на поверхности подложки топологии маски датчика фокусировки - датчик будет чувствовать смещение подложки, но не чувствовать наклон плоскости подложки в точке измерения. Только в этом случае точное измерение в нескольких точках рабочего поля реального положения поверхности подложки позволит с большей точностью определять как смещение подложки вдоль оптической оси проекционного объектива, так и наклон подложки. Кроме того, у многоканального датчика фокусировки прототипа существует еще один недостаток. При построении на поверхности пластины изображения малого отверстия маски датчика существует возможность появления дополнительной погрешности измерения, связанной с неидеальной гладкостью поверхности подложки. В процессе многочисленных технологических обработок (травление, имплантация, напыление) на поверхности подложки появляется определенный рельеф топологических структур изготавливаемых приборов. Особенно неровность поверхности подложки становится заметна на финишных технологических слоях. Слой фоторезиста, покрывающий подложку, не всегда нивелирует рельеф топологии. Поэтому изображение малого отверстия маски датчика фокусировки,построенное на такую поверхность, может попасть либо на углубление, либо на выпуклость рельефа топологии, причем в разных каналах датчика возможны различные варианты, что и вызовет дополнительную ошибку в определении положения плоскости поверхности подложки или ее наклона. Целью полезной модели является повышение качества переноса изображения проекционной экспонирующей системы за счет более точного слежения за плоскостью экспонирования. Поставленная задача достигается тем, что проекционная экспонирующая система содержит осветительную систему, стол ретиклов с ретиклом, проекционный объектив, координатный стол пластин с подложкой, выполненный с приводами перемещения стола по координатам ,и вдоль оптической оси проекционного объектива, систему фокусировки, состоящую из многоканального датчика фокусировки и устройства обработки сигналов фокусировки, устройство управления проекционной экспонирующей системой, при этом многоканальный датчик фокусировки выполнен с раздельными каналами с возможностью построения изображения маски каждого канала на подложку и, после отражения от нее на фотоприемник соответствующего канала, причем топология маски каждого канала выполнена в виде узких щелей, ориентированных вдоль пересечения плоскости резкого изображения объектива каждого канала датчика фокусировки и поверхности подложки. Суть полезной модели поясняется чертежами, где на фиг. 1 изображена общая схема проекционной экспонирующей системы на фиг. 2 изображена схема одного канала датчика фокусировки на фиг. 3 изображена возможная топология маски каждого канала датчика фокусировки. Проекционная экспонирующая система (фиг. 1) содержит осветительную систему 1,стол ретиклов 2 с ретиклом 3, проекционный объектив 4, координатный стол пластин 5 с подложкой 6, оснащенный приводами перемещения стола по координатам ,(на фигурах не показаны) и приводами 7 для перемещения стола вдоль оптической оси проекционного объектива 4, систему фокусировки, состоящую из многоканального датчика фокусировки 8 и устройства обработки сигналов фокусировки 9, и устройство управления проекционной экспонирующей системой 10. 3 72222011.04.30 Каждый из каналов 8.1, 8.2, 8.3 многоканального датчика фокусировки содержит источник света 11 (фиг. 2), маску 12, объектив 13 для построения изображения 14 маски 12 в плоскость подложки 6, объектив 13 для перестроения изображения 14 из плоскости подложки в плоскость фотоприемника 15. Проекционная экспонирующая система работает следующим образом. Работой всех механизмов, клапанов и датчиков в проекционной экспонирующей системе управляет устройство управления проекционной экспонирующей системой 10. На стол ретиклов 2 загружается ретикл 3, на стол пластин 5 загружается подложка 6. Координатный стол пластин 5 перемещает подложку 6 в точку измерения знаков совмещения. После измерения координат знаков на подложке рассчитываются поправки совмещения для масштаба, разворота и сдвига каждого кадра подложки 6. Система совмещения на фигурах не показана. Многоканальным датчиком фокусировки 8 с раздельными каналами 8.1, 8.2, 8.3 измеряется положение поверхности подложки относительно проекционного объектива 4 вдоль оптической оси. Приводами 7 стол 5 с подложкой 6 перемещается так, чтобы поверхность подложки 6 находилась точно в плоскости лучшего изображения проекционного объектива 4. Открывается затвор (на фигурах не показан) в осветительной системе 1, и производится экспонирование первого кадра. После этого стол пластин 5 перемещает подложку 6 в точку экспонирования следующего кадра, и цикл повторяется. После того как на подложке 6 будут проэкспонированы все кадры, она выгружается и загружается новая. Рассмотрим более подробно работу многоканального датчика фокусировки 8. Количество каналов многоканального датчика фокусировки должно быть не менее трех. Каналы 8.1, 8.2, 8.3 многоканального датчика фокусировки, работающие по трем зонам кадра,обеспечивают непрерывный контроль пространственного положения участка поверхности подложки 6, находящегося в поле зрения проекционного объектива 4. Каждый из каналов многоканального датчика фокусировки 8 работает следующим образом излучатель 11 освещает маску 12, изображение которой объективом 13 строится на подложку 6. Далее объектив 13 перестраивает отраженное от подложки 6 изображение 14 маски 12 в плоскость фотоприемника 15. Сигналы с каждого канала многоканального датчика фокусировки 8 обрабатываются устройством обработки сигналов фокусировки 9, которое выделяет из этих сигналов по одному из известных методов информацию о дефокусировке и наклонах поверхности подложки 6 и формирует управляющие сигналы для приводов 7 координатного стола пластин 5. В режиме слежения за поверхностью подложки 6 приводы 7 перемещают по вертикали и (или) наклоняют координатный стол пластин 5 с подложкой 6 так, чтобы фокусируемый участок подложки 6 оказался в плоскости наилучшего изображения проекционного объектива 4. Благодаря тому что топология маски 12 (фиг. 2) каждого канала датчика фокусировки 8 выполнена в виде узких щелей (фиг. 3), ориентированных вдоль пересечения плоскости резкого изображения объектива 13 (фиг. 2) датчика фокусировки 8 и поверхности подложки 6, на поверхности последней строится изображение не малого отверстия, как у прототипа, а достаточно протяженное по поверхности подложки 6 изображение маски 12. Это позволяет аппаратно усреднять в результатах измерения каждого из каналов 8.1, 8.2, 8.3 датчика фокусировки 8 существующий рельеф топологии подложки, и тем самым обеспечивать более точную фокусировку и выравнивание подложки при экспонировании каждого кадра. Длина щелей маски 12 (фиг. 2) ограничена размером рабочего поля объектива 13 датчика фокусировки. Максимальная ширина щелей маски датчика определяется глубиной резкости объектива 13 датчика фокусировки (фиг. 2) и углом наклона оптической оси датчика к плоскости подложки, то есть условием построения в плоскости подложки 6 резкого изображения 14 топологии маски 12. 4 72222011.04.30 Предложенное техническое решение позволяет повысить качество переноса изображения проекционной экспонирующей системы за счет более точного оперативного слежения за плоскостью резкого изображения проекционного объектива. Предложенное техническое решение особенно актуально в проекционных экспонирующих системах с увеличенным размером рабочего поля. Национальный центр интеллектуальной собственности. 220034, г. Минск, ул. Козлова, 20. 5
МПК / Метки
МПК: G02B 17/00, G03B 27/42
Метки: система, проекционная, экспонирующая
Код ссылки
<a href="https://by.patents.su/5-u7222-proekcionnaya-eksponiruyushhaya-sistema.html" rel="bookmark" title="База патентов Беларуси">Проекционная экспонирующая система</a>
Предыдущий патент: Сушилка
Следующий патент: Топливный элемент с ионообменной мембраной и системой охлаждения (варианты)
Случайный патент: Система ручного управления посадкой беспилотного летательного аппарата